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FOREWARD

The present manual deals with basic knowledge
concerning data analysis. Originally, this handbook was
drafted as part of the Manual on Physics Experiments for
undergraduates in the Department of Fisheries, Faculty of
Agriculture, Kyoto University, Kyoto, Japan. On the
occasion of this publication, the text has been revised to
include further concrete examples. The author hopes that
it will prove useful to those students and research
scientists who engage in data processing in the course of

their laboratory experiments or field observations.

Finally, the author wishes to thank
Miss B. Mountfield for her devoted assistance in the

compilation of the present manual.
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Training Department
Southeast Asian Fisheries
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Random Error and Mean Value

When a gquantity is measured, it is usually read by means of
the scale of an apparatus. Generally, the measurement is taken by
the eye to the nearest 1/10 of the smallest scale. In conseguence,
the last figure of the measured values contains a reading error,

besides an instrumental error.

If there are n observed data al, a2, oaiat iy an on a quantity,

then the arithmetic mean M is given to be

R (1.1)
n i

The difference ai of each measured value a, from M is called the

residual or simply the error. The sum of these errors must be zero,

M-a, =0 M= ai =&,
n n

ot ter ot

Hee, = 05 (152)

The noteworthy point is that the mean value is not a measured value

but a value derived from measured data. When measuring a quantity,

its true value is unknown and can never be determined exactly by

observation. In cases containing random errors, the mean value is

regarded as the best estimate that can approach closer to the true
d/

value as the number of observations increases— .

1/ In the present case, the true value is unknown but can be
estimated by the arithmetic mean of observed data. The accuracy
of this estimate is given as 0/vn, where 0 and n are the stan-
dard deviation of the sample and the number of observations
respectively (Refer Eq. 1.3). Therefore, if 0 does not vary
greatly with increasing n, we can roughly regard that the

accuracy of the estimate increases in proportion to Vn.



A peculiarity of random error is that the more observations
are made the more frequently the measured values fall in the proxi-
mity of the mean value; the probability of making an error decreases

very rapidly as the magnitude of the error increases. In other

Fig. 1

words the frequency distribution of such data shows a symmetrical
bell-shaped graphg/with the center at the mean (Fig. 1). This
implies that the probability of a datum which falls below the mean

is equal to that of the datum above this wvalue.

The standard deviation 0 of a set of observations is defined
as the root-mean-square value of the deviation from the arithmetic
mean, or the square root of the averaged squared residual. Thus

if n is the number of observations, we have

g = : , (153

2/ This type of curve is referred to as error curve or probability

curve.



The number € , such that the probability that an error is between
- € and + € is %, is called the probable error of a single obser-
vation. These 0 and € are related by the following equation,

L aiz

0.6745 =06 745 gR= e (1.4)

n

The value of 0 or of € can be used as a measure of dispersion of a
set of observations. For small 0 or € the curve of frequency dis-
tribution has a high peak and falls sharply, showing a small spread
or dispersion in the observation, and, conversely, if 0 and € have
a large value, the peak is low, the curve falls gradually and the

spread is wide (Fig. 2),

Fig. 2

Significant Figures

Since any measured value contains some errors, it is meaning-
less to write down simply all the figures derived from mathematical
calculations. As an example, let us consider a volume of liguid in
a vessel graduated to the order of 10 ml. and another volume of
ligquid in the other vessel graduated to the order of 1/10 ml.
Suppose that the former value was measured to be 251 ml. and the

latter 25.27 ml. and the liquids were mixed. The volume of the



mixed liquids should not be expressed as 276.27 ml. but should be
276 ml. The value should be rounded off to the nearest figure of

the less precisely measured value (Fig. 3).

, 251 + 0.5 ml.

N N

Fig. 3

When calculations are made using numerical values containing
errors such as (a * da) and (b * 8b), the error 8y exerting

influence upon the calculated result Y can be obtained as follows:

1. &y = nda, for Y = na.
2. By = nﬁa/az, for Yy = n/a.
3. &y = n(6a + 6b), for Y = n(a £ b).

4. &y = n(bda + abb)
= nab (da/a + Sb/b), for Y = nab.

5. &y = n(a/b) (Sa/a - 8b/b), for Y = na/b.



Generally, if the equation is given to be
Yo = E(a, by ey sy (2:1)

the error ¢y is expressed as

8y =%§5a+g—£6b+g—£6c+... (2.2)

Since the calculated y contains the error 8y, those figures
below the place affected by the error are insignificant. It must
also be noted that the precision of observations should be taken
into account with the relative error d&y/y , not with the absolute

error 0y .

When writing numbers containing many zeros before or after
the decimal point, it is convenient to employ powers of 10, For
example, 135,000 or 0.000135 have three significant figures in
common and can be expressed as 1.35 x 105 or 1.35 » 10~4 respec-
tively. Numbers associated with enumerations or countings, as
opposed to measurements, are of course exact and so have an
unlimited number of significant figures. In some of these cases,
however, it may be difficult to decide which figures are signi-
ficant without further information. For example, the number
186,000,000 may have 3, 4, ..., 9 significant figures. If it is
known to have five significant figures, it would be better to
record the number as 1.8600 x 108.

Bearing the exact meaning of significant figures in mind, we
can often obtain a sufficient accuracy even by approximate calcu-
lation. In cases where the error is small, it may be sufficient to
take merely the infinitesimal terms of the first degree given by
expansion. The following are expansions usually employed under
such circumstances. Here 6 , Y + ... denote the infinitesimal

values.



I+
(o]
Q
o]
0
k]

I+
Ch

(L £ 8" = 1 %n6
VA = 1 % %6,
2 =
Qzom - LFM

1

—_— = 1 I 16,

T

L+8™ = 1 +mb

(I g™

N S =

(L £ EJ(L £ )

VP Py =% (Dl +

where Dl = D2.

sin (x * §) = sin x

cos (x* 8) = cos x T
tan x

tan (x + §) = T

gin 6 = tan 0 = §;

cos 6 = 1,

where 6§ is given in

radian.

+1

+1

+1



Graphical Representation of Data (Linearization of Plots)

When studying the variation or the distribution of numerical
values, graphical representation is mostly used to show the quan-
titative relationship between two variables. By this representation
the general trend in a group of measured values can be understood at
a glance. Some noteworthy points in using graph papers are

described below.

There are different types of graph papers. The most commonly
used are those in which the rectangular coordinate axes are
graduated in equi-intervals. Logarithmic graph papers are also used

and they can be in the form of semi-log or log-log papers.

The method of using the axes of the graph papers is as follows:

1. Take the independent variable on the abscissa.

2. Place marks on the axes in such a manner that the plots of

data are distributed over a wide enough space.

3. Select the variables in such a way that the plots are
distributed almost linearly. This includes the trans-

formation of original variables.

4, Mark the units of the variables on the respective axis.

5. When the logarithms of the measured values are plotted,
the ordinary linear section paper can of course be used
but if logarithmic section papers are used the measured
values can be plotted without any modification. In the
latter case the decimal places of the figures such as

0,1, 1.0, 10, 100, etc., must be taken in equi-intervals



on the standard stubs of the axis (Fig. 4). Therefore,

there is no zero on the logarithmic scale.

When a theoretical equation is to be compared with measured
data on a graph, it is preferable to plot them as straight lines
rather than curves. Many types of curves can be converted into
straight lines by suitable transformation of variables on the

coordinate axes.

3.1. Straight Line

When plots are distributed almost linearly, the relation

of the two guantities x and y is expressed by
y = a + bx, (8.l

where a and b are constants whose wvalues can be determined
from the observed data. The constants can be obtained by
solving two simultaneous equations which are given by the
readings of two pairs x and y from the line fitted visually.

However, the more convenient method is a graphical solution.



In the equation (3.1), v = a, when x = 0; therefore a shows

the intercept on the y-axis (Fig. 5). Since, moreover,

y = a + bx

a
—ﬁ—_--—--ﬂh—-_—-"‘,
b4
0
0 X
Fig. 5
b o= :
55
or
b = tan 6 ,

where 8 is the angle between the x-axis and the straight

line visually fitted, we can easily obtain b.
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Parabola or Hyperbola

Consider the case where the two quantities x and y are

related by

y = ax’, (3.3)
where a and n are constants. Taking logarithms, the

original equation becomes
log y = 1log a + n log x. (3.4)

Therefore, when we plot log x and log y instead of x and y,

we can get the following linear relation
¥ = ¢ + nX, (3.4")

This relationship is of course obtainable by plotting log x
and log y on a linear section paper. When using log-log

papers, however, we can easily obtain the relationship.

For the determination of the constant a, taking the fact
that log x = 0, for x = 1 into consideration, we have the

relation

log y.]x=l = log a. (3.5)

Therefore, we can get log a by reading the value on the
Y-axis for x = 1. When there is no point x = 1 on the
abscissa, we can also obtain the value by using the Y-inter-
cepts corresponding to x = 10, 100, ... For example, denoting

by log a, the reading of the Y-intercept for x = 1000 (Fig. 6),

1
we have
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Y (= log y)

o]
o

______________________ =
A
: I
10 | | S IS R ! |
10° 10"
X(= log x)
Pig. 6
log al = log a + 3n,
or

log a = log a, - 3n. (B 5Y)

1
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The constant a is thus determined, and n can be obtained from

3/

the gradient of the given straight line~ .

Exponential Curve

When the relation between the two observed quantities x
: ; nx nx ; :
and y is given by y = a.l0 or y = a.e and accordingly in

turn

log y = log a + nx, (3.6)

or

I

log y log a + M nx, (Beel)

it is convenient to plot log y against x, where M = 0.4343

logig N
(= m———). In this case the original exponential curve is
loge N

converted into a straight line which forms
¥ = b + x; (3.6'")
where b and ¢ are constants.

In the equations (3.6 and 3.6''), denoting the increments

of Y and x by A ¥ and A x respectively, we have

n = Ay/Ax. {3 .7)

3/ In Fig. 6, the slope n is given numerically to be 0.467
(using an appropriate unit of length for BA and AC), and
al is read to be 340 for x = 1000. Therefore, from the
equation (3.5'), we have

log a = log 340 - 3 x 0.467

2.532 - 1.401 = 1.131

Thus, the constant a can be determined to be 13.52.



Y(= log ¥)

i

y:

S0

Wi JF - |

For example, referring to Fig. 7, consider the A x = 10,

ik, 7

then

the corresponding AY is given to be the linear segment AC on

the Y-axis.

Since OE = log 100 - log 10 = 1 in this figure,

by measuring the linear segments AC and EE} we obtain

AY

and therefore,

- AC/OE .

- AC / OE ,

10 (3.8)



—

: T it nx
Since y = a when x = 0 in the original form y = a.l0
the value of a is obtained from the intercept on the

Y (=log y)—axisé/.

When we have no information as to the theoretical equation
for purposes of comparison, it is usually very difficult to
ascertain the algebraical expression for a series of observed
data, because there is no definite method by which to arrive at
the final expression. However, the following table may be help-
ful in suggesting the type of mathematical equations which

express the shape of the curve on section paper.

Equation Characteristics
1. 3y = a + bx Straight line on linear section
paper.
2 . 5 :
2. y=a+ bx Curved line whose gradient is

proportional to x on linear section

paper.

2 ; ;
a + bx + cx Curved line whose gradient is

w
<
I

proportional to x on linear section

paper.

4/ In Fig. 7, the constant a can immediately be read to be 150,
The slope n is given numerically to be - 0.0698 from the

equation (3.8).



SelE S

uation Characteristics
4, y = E—E-EE‘ Straight line when y is plotted

against 1/x on linear section paper.

aXx

5. y = T i ‘Straight line when 1/y is plotted
against 1/x on linear section paper.
ax2
6. y = e Straight line when 1/y is plotted
1+ bx
against l/x2 on linear section
paper.
nx " : 5
7. y=a.l0 7, Straight line when y is plotted
nx - ! .
y = a.e against x on semi-log section paper.
8. y = ax" Straight line when y is plotted

against x on log-log section paper.

Least Square Method

When a series of observed data (xi, yi) follows the relation
y = mx + b, as a natural consequence the following equations must

be wvalid:
R = = 5
mx, b Y. 0, (4.1)

where i =1, 2, 3, ..., n. Since, however, the errors Vi always
accompany the measured data, the above relation should be

rewritten as

V.. (4.2)

I

mx, +b = Y;



e

For the determination of constants m and b which are the nearest to
their ideal values, the least square method can be employed. In
the equation (4.2), vy take the most likely values when Z \32 takes
the least value. Putting Z xaz = S for the sake of simplicity, we

obtain

2
= 2 4 i
S (xim b yi)
2

Il

mzz x_2 +2bm I x, - 2m % X.V. + nb
i i it

- 2b L v, + z yiz. (4.3)

S takes its least value when the following conditions are satisfied,

dJs ¥ 2

o 0= 2m in + 2b in 2 inyi . (4.4)
& - 9= ve, oM - 2 Uy (4.5)
b = =

On solving the simul taneous equations (4.4) and (4.5), we find

n inyi - inZyi .
m = > 5 (4.6)
n i, - ( Zx.)
< i

2
LT Te T I T T o
b = 121 l;l. (4.7)
I, = (¥ )
o b 1

Generally, when an empirical expression is given in the form

o= B @y Wi Zp eally
the residual vi are expressed as follows

vi =F (xi, Yir 2y S S e Li ;
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where Xiv Yyo zi ... are observed values. The constants A, B,
C, ... contained in the function F are selected in such a manner as

W o 2
to minimize Zvi ;

B{Zviz}
A =8

2
B{Z\Ji ) .
OB ok

Here, the number of these simultaneous equations must be equal to
that of the constants contained in the original equation. When

these equations are solved we can determine the constants.

To facilitate the understanding of the least square method,
let us consider the following exampe: Table 1 gives experimental
values of the pressure P of a given mass of gas corresponding to
various values of the volume V. According to thermodynamic princi-

ples, a relationship having the form PVY

= C, where ¥ and C are
constants, should exist between the variables. (a) Find the values

of Y and C. (b) Write the equation connecting P and V.
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Table 1
v 54.3 61.8 72 .4 88.7 118.6 194.0
P il 2 49 .5 37.5 28.4 U2 ) 10

Since PVY = C, we have

log P + ¥ log V = log C,
or

log P = log C = ¥ log V.

Taking Log V = X and log P = Y, the last equation can be written
Y =Db + mX, (4.8)

where b = log C and m = - Y.

Table 2 below gives X = log V and Y = log P corresponding to
the values of V and P in Table 1 and also indicates the calculations

involved in computing the least square line (4.8).

Table 2
X (= log V) Y (= 1log P) G XY

1.7348 1.7868 3.0095 3.0997
1.7910 1.6946 3.2077 3.0350
1.8597 1.5752 3.4585 2.9294
1.9479 1.4533 3.7943 2.8309
2.0741 1.2833 4.3019 2.6617
2.2878 1.0043 5.2340 2.2976

TX = 11.6953 IY = 8.7975 X% = 23.0059 FXY = 16.8543
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From the equations (4.6) and (4.7), we have

LN XY = X Y

= - 1.40,
nE R - (D%
and
Ix°T vy -2 %I XY
b: 2 2=4.2O
P (S

Therefore, the equation (4.8) becomes Y = 4.20 - 1.40 X. Since

<
b=4,20=1cgC andm= - 1.40==% , C= 1,60 x 10 and
Y = 1.40. The required equation in terms of P and V can be written
PV1'4O= 16,000,

This problem can be solved as well by using the method in
Section 3.2. For each pair of values of P and V in Table 1, we
obtain a point which is plotted on a log-log graph paper as shown
in Fig. 8. A line (drawn freehand) approximating these points is
also indicated. The resulting graph shows that there is a linear
relationship between log P and log V which can be represented by

the equation

log P=Db + m log V or Y ="b 4 m X.

The slope m, which is negative in this case, is given
numerically by the ratio of the lengths of AB to AC (using an
appropriate unit of length). Measurement in this case yields

m=- 1.4, To obtain b, one point on the line is needed.
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For example when V

so that

log

I

100, P = 25 from the graph. Then

log P - m log V

I

1]

log 25 + 1.4 log 100
1.4 + (1.4)(2) = 4.2

1.4

+ 1.4 log V = 4.2, and PV " = 16,000.




